New Insights in Loop Quantum Cosmology through an Exactly Solvable Model

(Work in collaboration with Abhay Ashtekar and Alejandro Corichi)

Parampreet Singh
Institute for Gravitation and the Cosmos, Penn State

IGC Inaugural Conference
Motivation

Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.

(Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))
Motivation

Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.
(Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.
Motivation

- Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.

 (Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. **Classical Big Bang** replaced by **Quantum Big Bounce**.
Motivation

- Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.
 (Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. **Classical Big Bang** replaced by **Quantum Big Bounce**.

- Some open questions:
Motivation

Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.

(Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. Classical Big Bang replaced by Quantum Big Bounce.

Some open questions:

- Is bounce restricted only to the states which are semi-classical at late times?
Motivation

- Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.

 (Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. **Classical Big Bang** replaced by **Quantum Big Bounce**.

- Some open questions:
 - Is bounce restricted only to the states which are semi-classical at late times?
 - What happens to the fluctuations in general? Does universe retain its memory through the bounce?
Motivation

- Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.

(Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. Classical Big Bang replaced by Quantum Big Bounce.

- Some open questions:
 - Is bounce restricted only to the states which are semi-classical at late times?
 - What happens to the fluctuations in general? Does universe retain its memory through the bounce?
 - In what sense LQC and WDW converge to each other or diverge from each other?
Motivation

- Extensive analytical and numerical methods in LQC: valuable insights on singularity resolution in symmetry reduced models.
 (Ashtekar, Pawlowski, PS (06-) + Vandersloot (07))

- Consider a semi-classical state in a large universe at low curvature and evolve backward towards big bang. State follows classical trajectory till it reaches close to Planck scale. Does not fall into singularity, but bounces in Planck regime to a pre-big bang branch.

- Underlying discrete quantum geometry leads to repulsive QG effects at Planck scale. Classical Big Bang replaced by Quantum Big Bounce.

- Some open questions:
 - Is bounce restricted only to the states which are semi-classical at late times?
 - What happens to the fluctuations in general? Does universe retain its memory through the bounce?
 - In what sense LQC and WDW converge to each other or diverge from each other?
 - Does LQC have a quantum continuum limit?
Exactly Solvable LQC (SLQC)

- Canonical quantization of homogeneous and isotropic cosmology based on LQG.

- Homogeneity and Isotropy $\Rightarrow A^i_a \rightarrow c$, $E^a_i \rightarrow p$

Relation with metric variables: $|p| = a^2$, $c \propto \dot{a}$

- Full control on quantum theory for various models.

Quantum constraint with massless scalar:

$$\Theta(v)\Psi(v, \phi) = -\partial^2_\phi \Psi(v, \phi)$$

Uniform difference equation in v with a correct classical limit, no gauge artifacts and no fake Planck scale effects. (Contrast with early models, other discretization schemes).

$$v = |p|^{3/2} / (2\pi \gamma \ell_P^2), \quad b := c/|p|^{1/2}, \quad \{b, v\} = 2$$

- Quantum Constraint in b representation:

$$\Theta(b)\chi(b, \phi) = -12\pi G \frac{\sin(\lambda b)}{\lambda} \left(\frac{\partial}{\partial b} \frac{\sin(\lambda b)}{\lambda} \frac{\partial}{\partial b} \right) \chi(b, \phi) = -\partial^2_\phi \chi(b, \phi)$$

$\phi \rightarrow$ internal time. Θ: positive definite & self adjoint. $\lambda^2 \rightarrow$ Area Gap
Hilbert space can be constructed following Klein-Gordon theory (Positive frequency solutions).

Physical Inner product:

\[(\chi, \chi)_{\text{phy}} = \int d\bar{b} \bar{\chi}(b)|\hat{v}|\chi(b)\]

Dirac Observables: \(\hat{P}_\phi, \hat{V}|\phi\)

Introduce \(x := (12\pi G)^{-1/2} \ln(\tan(\lambda b/2))\)

Quantum Constraint: \(\partial^2_\phi \chi(\phi, x) = \partial^2_x \chi(\phi, x)\)

General solution:

\[\chi = \chi_+(\phi + x) + \chi_-(\phi - x) := \chi_+(x_+) + \chi_-(x_-)\]

Physical states anti-symmetric in \(b\): \(\chi(b, \phi) = -\chi(b - \pi/2, \phi)\). Imposes relation between \(\chi_+\) and \(\chi_-\)
Wheeler-DeWitt Theory

- Quantum constraint in b representation:
 \[
 \Theta(b)\chi(b, \phi) = -12\pi G \left(b \frac{\partial}{\partial b} b \frac{\partial}{\partial b} \chi(b, \phi) = -\partial^2_{\phi} \chi(b, \phi) \right)
 \]

- As in SLQC, we have an internal clock, physical inner product and Dirac Obsevables.

- Introduce
 \[
 y := (12\pi G)^{-1/2} \ln \left(\frac{b}{2b_0} \right)
 \]
 \[
 \Rightarrow \quad \partial^2_{\phi} \chi(\phi, y) = \partial^2_y \chi(\phi, y)
 \]

- General solution:
 \[
 \chi = \chi_+(\phi + y) + \chi_- (\phi - y) := \chi_+(y_+) + \chi_- (y_-)
 \]

- Unlike SLQC, χ_+ (expanding) and χ_- (contracting) are disjoint.
Volume observable in WDW

\[
(\chi, \hat{V}|\phi \chi)_{\text{phy}} = 2\pi \gamma \ell_p^2 (\hat{v}\chi, \hat{v}\chi)_{\text{kin}}
\]

\[
= \frac{16\gamma \ell_p^2}{\sqrt{12\pi G} b_0} \int_{-\infty}^{\infty} dy_+ \left| \frac{d\chi_+}{dy_+} \right|^2 e^{\sqrt{12\pi G}(\phi-y_+)}
\]

\[
= V_o e^{\sqrt{12\pi G}\phi}.
\]

- As \(\phi \to -\infty, \langle \hat{V}|\phi \rangle \to 0 \). The backward evolution leads to the big bang singularity.

- Fluctuations:

\[
(\chi, \hat{V}^2|\phi \chi)_{\text{phy}} = W_0 e^{2\sqrt{12\pi G}\phi}
\]

\[
\left((\Delta V|\phi)/\langle \hat{V}|\phi \rangle \right)^2 = (W_0/V_0)^2 - 1.
\]

Remains constant with evolution.
Volume observable in SLQC

\[
(\chi, \hat{V}|\phi \chi)_{\text{phy}} = \frac{8 \gamma \ell_P^2 \lambda^2}{\sqrt{12\pi G}} \left[\int_{-\infty}^{\infty} dx_+ \left| \frac{d\chi_+}{dx_+} \right|^2 \cosh(\sqrt{12\pi G}(x_+ - \phi))
+ \int_{-\infty}^{\infty} dx_- \left| \frac{d\chi_-}{dx_-} \right|^2 \cosh(\sqrt{12\pi G}(-x_- + \phi)) \right]
= I_+ e^{-\sqrt{12\pi G}\phi} + I_- e^{\sqrt{12\pi G}\phi}
\]

There exists a minimum value of \(\langle V|_{(\phi=\phi_B)} \rangle\) which occurs at

\[
\phi_B = (2\sqrt{12\pi G})^{-1} \ln(I_+/I_-)
\]

\(\langle V|_\phi \rangle\) is symmetric across the bounce point.
Fluctuations

\[\langle V^2 | \phi \rangle = J_0 + J_+ e^{-2\sqrt{12\pi G} \phi} + J_- e^{2\sqrt{12\pi G} \phi} \]

is symmetric across

\[\phi'_B = (4\sqrt{12\pi G})^{-1} \ln(J_+/J_-) \]

Relative dispersion:

\[(\Delta V / \langle \hat{V} \rangle)^2_{\phi \to \infty} = \frac{J_-}{I_-^2} - 1 \]

\[(\Delta V / \langle \hat{V} \rangle)^2_{\phi \to -\infty} = \frac{J_+}{I_+^2} - 1 \]

For \(\phi_B = \phi'_B \), \(D := (\Delta V / \langle \hat{V} \rangle)^2_{\phi \to -\infty} - (\Delta V / \langle \hat{V} \rangle)^2_{\phi \to \infty} = 0 \)

Relative dispersion bounded in time evolution. A single condition on the infinite dimensional space of initial data implies symmetric fluctuations across bounce point.
How much does the Cosmos recall?

For a very large class of states universe retains all its memory across the bounce:

$$\chi(x, \phi) = \int_0^\infty dk \ F(k) e^{-ik(\phi+x)} - \int_0^\infty dk \ \tilde{F}(k) e^{-ik(\phi-x)}$$

For any real and arbitrary $\tilde{F}(k)$, fluctuations are symmetric.
How much does the Cosmos recall?

For a very large class of states universe retains all its memory across the bounce:

\[
\chi(x, \phi) = \int_0^\infty dk \tilde{F}(k) e^{-ik(\phi + x)} - \int_0^\infty dk \tilde{F}(k) e^{-ik(\phi - x)}
\]

For any real and arbitrary \(\tilde{F}(k)\), fluctuations are symmetric. Includes real linear combinations of

\[
f_n(k) = k^n e^{-(k-k_0)^2/\beta^2} + ikx_0,
\]

→ includes all squeezed states with arbitrary squeezing.
How much does the Cosmos recall?

- For a very large class of states universe retains all its memory across the bounce:

\[\chi(x, \phi) = \int_0^\infty dk \tilde{F}(k) e^{-ik(\phi + x)} - \int_0^\infty dk \tilde{F}(k) e^{-ik(\phi - x)} \]

For any real and arbitrary \(\tilde{F}(k) \), fluctuations are symmetric.

- Includes real linear combinations of

\[f_n(k) = k^n e^{-(k-k_0)^2/\beta^2+ikx_0}, \]

\[\rightarrow \text{includes all squeezed states with arbitrary squeezing.} \]

- Cosmos remembers everything across the bounce for such states. There is a Total Recall.
How much does the Cosmos recall?

Consider a general state in the present epoch (post big bang) describing a large classical universe at low curvature

$$\lim_{\phi \to \infty} \left(\frac{\Delta \hat{V}}{\langle \hat{V} \rangle} \right)^2 = \frac{J_0}{I_0^2} - 1 =: \delta_v \ll 1$$

Relative dispersion in curvature:

$$\left(\Delta \tan \left(\frac{\lambda b}{2} \right) / \langle \tan \left(\frac{\lambda b}{2} \rangle \right) \right) = \sqrt{12\pi G} \Delta x =: \delta_b \ll 1$$
How much does the Cosmos recall?

Consider a general state in the present epoch (post big bang) describing a large classical universe at low curvature

$$\lim_{\phi \to \infty} \left(\frac{\Delta \hat{V}}{\langle \hat{V} \rangle} \right)^2 = \frac{J_-}{I_-^2} - 1 =: \delta_v \ll 1$$

Relative dispersion in curvature:

$$\left(\Delta \tan(\lambda_b/2)/\langle \tan(\lambda_b/2) \rangle \right) = \sqrt{12\pi G} \Delta x =: \delta_b \ll 1$$

$$D = \left(\frac{\Delta V}{\langle \hat{V} \rangle} \right)_{\phi \to -\infty} - \left(\frac{\Delta V}{\langle \hat{V} \rangle} \right)_{\phi \to \infty} < (1 + \delta_v) (e^{8\delta_b} - 1)$$
How much does the Cosmos recall?

Consider a general state in the present epoch (post big bang) describing a large classical universe at low curvature

\[
\lim_{\phi \to \infty} \left(\frac{\Delta \hat{V}}{\langle \hat{V} \rangle} \right)^2 = \frac{J_-}{I_-^2} - 1 =: \delta_v \ll 1
\]

Relative dispersion in curvature:

\[
(\Delta \tan(\lambda b/2)/\langle \tan(\lambda b/2) \rangle) = \sqrt{12\pi G} \Delta x =: \delta_b \ll 1
\]

\[
D = (\Delta V/\langle \hat{V} \rangle)_{\phi \to -\infty}^2 - (\Delta V/\langle \hat{V} \rangle)_{\phi \to \infty}^2 < (1 + \delta_v)(e^{8\delta_b} - 1)
\]

Difference bounded by the relative dispersions in the initial state. A semi-classical initial state evolves to a semi-classical state after the bounce. Fluctuations are symmetric up to very small difference.
How much does the Cosmos recall?

Consider a general state in the present epoch (post big bang) describing a large classical universe at low curvature

\[
\lim_{\phi \to \infty} \left(\frac{\Delta \hat{V}}{\langle \hat{V} \rangle} \right)^2 = \frac{J_-}{I_-^2} - 1 =: \delta_v \ll 1
\]

Relative dispersion in curvature:

\[
\frac{\Delta \tan(\lambda b/2)}{\langle \tan(\lambda b/2) \rangle} = \sqrt{12\pi G} \Delta x =: \delta_b \ll 1
\]

\[
D = (\Delta V/\langle \hat{V} \rangle)_{\phi \to -\infty}^2 - (\Delta V/\langle \hat{V} \rangle)_{\phi \to \infty}^2 < (1 + \delta_v)(e^{8\delta_b} - 1)
\]

Difference bounded by the relative dispersions in the initial state. A semi-classical initial state evolves to a semi-classical state after the bounce. Fluctuations are symmetric up to very small difference.

Answer: Universe has a very very sharp memory. Cosmos remembers almost everything after the bounce.
For a fixed value of λ select $\Psi_0(b)$: $\langle \hat{V}|_{\phi=0}\rangle_{\lambda} = \langle \hat{V}|_{\phi=0}\rangle_{\text{WDW}} =: V_0$

Relative difference: bounded in future evolution

$$\frac{|\langle \hat{V}\rangle_{\text{WDW}}(\phi) - \langle \hat{V}\rangle_{\lambda}(\phi)|}{\langle \hat{V}\rangle_{\text{WDW}}(\phi)} \leq \delta := I_1/V_0 \text{ (very small)}$$
For a fixed value of \(\lambda \) select \(\Psi_0(b) : \langle \hat{V}_{\phi=0} \rangle_{\lambda} = \langle \hat{V}_{\phi=0} \rangle_{\text{WDW}} =: V_0 \)

Relative difference: bounded in future evolution
\[
|\langle \hat{V}_{\text{WDW}}(\phi) \rangle - \langle \hat{V}_{\lambda}(\phi) \rangle| / \langle \hat{V}_{\text{WDW}}(\phi) \rangle \leq \delta := I_1/V_0 \text{ (very small)}
\]

For a given \(\phi_T \) and \(\epsilon > 0 \), \(\exists \lambda(\epsilon,T) > 0 \) such that,
\[
|\langle \hat{V}_{\text{WDW}}(\phi) \rangle - \langle \hat{V}_{\lambda}(\phi) \rangle| < \epsilon
\]
WDW & SLQC and the lack of continuum limit

For a fixed value of λ, select $\Psi_0(b): \langle \hat{V}|_{\phi=0}\rangle_\lambda = \langle \hat{V}|_{\phi=0}\rangle_{\text{WDW}} =: V_0$

Relative difference: bounded in future evolution
$$|\langle \hat{V}\rangle_{\text{WDW}}(\phi) - \langle \hat{V}\rangle_\lambda(\phi)|/\langle \hat{V}\rangle_{\text{WDW}}(\phi) \leq \delta := I_1/V_0 \text{ (very small)}$$

For a given ϕ_T and $\epsilon > 0$, $\exists \lambda(\epsilon,T) > 0$ such that,
$$|\langle \hat{V}\rangle_{\text{WDW}}(\phi) - \langle \hat{V}\rangle_\lambda(\phi)| < \epsilon$$

For any $N > 0$ (arbitrarily large) $\exists \phi$ such that
$$|\langle \hat{V}\rangle_{\text{WDW}}(\phi) - \langle \hat{V}\rangle_\lambda(\phi)| > N$$
WDW & SLQC and the lack of continuum limit

- For a fixed value of \(\lambda \) select \(\Psi_0(b) : \langle \hat{V} \mid \phi = 0 \rangle_\lambda = \langle \hat{V} \mid \phi = 0 \rangle_{WDW} = : V_0 \)

 Relative difference: bounded in future evolution
 \[|\langle \hat{V} \rangle_{WDW}(\phi) - \langle \hat{V} \rangle_\lambda(\phi) / \langle \hat{V} \rangle_{WDW}(\phi) | \leq \delta := I_1 / V_0 \text{ (very small)} \]

- For a given \(\phi_T \) and \(\epsilon > 0 \), \(\exists \lambda_{(\epsilon,T)} > 0 \) such that,
 \[|\langle \hat{V} \rangle_{WDW}(\phi) - \langle \hat{V} \rangle_\lambda(\phi) | < \epsilon \]

- For any \(N > 0 \) (arbitrarily large) \(\exists \phi \) such that
 \[|\langle \hat{V} \rangle_{WDW}(\phi) - \langle \hat{V} \rangle_\lambda(\phi) | > N \]

- Is there a quantum continuum limit of SLQC?

 Consider backward evolution: \(\langle \hat{V} \rangle_{\lambda_0} - \langle \hat{V} \rangle_\lambda \) diverges as \(\phi \to -\infty \).
 \(\phi_B \longrightarrow -\infty \text{ as } \lambda \to 0. \)
 \(\rightarrow \) Uniform limit does not exist.
 Contrast with results on Harmonic Oscillator (Corichi, Vukasinac, Zapata (07)).
Summary

- Bounce not restricted to states which are semi-classical at late times. There is a pre-big bang branch for a dense subspace of \mathcal{H}_{phy}.
- For a very large class of states fluctuations are exactly symmetric across the bounce. More general states which describe a large volume low curvature epoch, fluctuations are symmetric up to negligible difference. Universe retains almost all its memory across bounce. (Results in harmony with various numerical simulations).
- SLQC and WDW approach GR at low curvatures. At large curvatures they depart significantly.
- In the backward evolution of the expanding branch for any given fixed time interval, SLQC and WDW agree to arbitrary accuracy by a choice of λ. However, for any given choice of λ, they diverge if one waits long enough.
- There is no limiting theory of SLQC when $\lambda \to 0$. Two different λ SLQC’s depart in a similar way as they do from WDW. SLQC is a fundamentally discrete theory.
Start with an arbitrary λ_o, refine the area gap ($\lambda_o \rightarrow \lambda$). For $\lambda < \lambda_o$, $\chi_i \in \mathcal{H}_{\lambda_o}$ under embedding $\chi_i \in \mathcal{H}_{\lambda}$. Under renormalization $\chi^\lambda := \sqrt{\lambda_o/\lambda} \chi^{\lambda_o}$, $|\chi^\lambda|^2 = |\chi^{\lambda_o}|^2$.
Fundamental discreteness of SLQC

- Start with an arbitrary λ_o, refine the area gap ($\lambda_o \rightarrow \lambda$).
 For $\lambda < \lambda_o$, $\chi_i \in \mathcal{H}_{\lambda_o}$ under embedding $\chi_i \in \mathcal{H}_\lambda$.
 Under renormalization $\chi^\lambda := \sqrt{\lambda_o/\lambda} \chi^{\lambda_o}$, $|\chi^\lambda|^2 = |\chi^{\lambda_o}|^2$.

- Initial data: At $\phi = \phi_i$, χ^λ_i and $\chi^{\lambda_o}_i$ give same $\langle \hat{V} \rangle$.
Fundamental discreteness of SLQC

- Start with an arbitrary λ_0, refine the area gap ($\lambda_0 \rightarrow \lambda$).
- For $\lambda < \lambda_0$, $\chi_i \in \mathcal{H}_{\lambda_0}$ under embedding $\chi_i \in \mathcal{H}_\lambda$.
- Under renormalization $\chi^\lambda := \sqrt{\lambda_0/\lambda} \chi^{\lambda_0}$, $|\chi^\lambda|^2 = |\chi^{\lambda_0}|^2$.

- Initial data: At $\phi = \phi_i$, χ^λ_i and $\chi^{\lambda_0}_i$ give same $\langle \hat{V} \rangle$.

- Refinement in $\lambda \Rightarrow x_\lambda \neq x_{\lambda_0} \Rightarrow I_{+, -}(\lambda) \neq I_{+, -}(\lambda_0)$. $I_{-}(\lambda)$ is a monotonic decreasing function. As $\lambda \rightarrow 0$, $I_{-}(\lambda)$ grows.
Start with an arbitrary λ_o, refine the area gap ($\lambda_o \rightarrow \lambda$). For $\lambda < \lambda_o$, $\chi_i \in H_{\lambda_o}$ under embedding $\chi_i \in H_{\lambda}$.

Under renormalization $\chi^\lambda := \sqrt{\lambda_o / \lambda} \chi^{\lambda_o}$, $|\chi^\lambda|^2 = |\chi^{\lambda_o}|^2$.

Initial data: At $\phi = \phi_i$, χ^λ_i and $\chi^{\lambda_o}_i$ give same $\langle \hat{V} \rangle$.

Refinement in $\lambda \Rightarrow x_\lambda \neq x_{\lambda_o} \Rightarrow I_{+,-}(\lambda) \neq I_{+,-}(\lambda_o)$. $I_{-}(\lambda)$ is a monotonic decreasing function. As $\lambda \rightarrow 0$, $I_{-}(\lambda)$ grows.

Consequence: In the backward evolution of an expanding branch

$$\langle \hat{V} \rangle_{\lambda_o} - \langle \hat{V} \rangle_{\lambda} = (I_{-}(\lambda_o) - I_{-}(\lambda))e^{-\sqrt{12\pi G} \phi}$$

which diverges as $\phi \rightarrow -\infty$.

$$\phi_B = (2\sqrt{12\pi G})^{-1} \ln(I_{+}/I_{-}) \rightarrow -\infty \quad \text{as} \quad \lambda \rightarrow 0.$$
Fundamental discreteness of SLQC

- Start with an arbitrary \(\lambda_o \), refine the area gap (\(\lambda_o \to \lambda \)).
 For \(\lambda < \lambda_o \), \(\chi_i \in \mathcal{H}_{\lambda_o} \) under embedding \(\chi_i \in \mathcal{H}_\lambda \).
 Under renormalization \(\chi^\lambda := \sqrt{\lambda_o/\lambda} \chi^{\lambda_o} \), \(|\chi^\lambda|^2 = |\chi^{\lambda_o}|^2 \).

- Initial data: At \(\phi = \phi_i \), \(\chi_i^\lambda \) and \(\chi_i^{\lambda_o} \) give same \(\langle \hat{V} \rangle \).

- Refinement in \(\lambda \Rightarrow x_\lambda \neq x_{\lambda_o} \Rightarrow I_{+, -}(\lambda) \neq I_{+, -}(\lambda_o) \). \(I_-(\lambda) \) is a monotonic decreasing function. As \(\lambda \to 0 \), \(I_-(\lambda) \) grows.

- Consequence: In the backward evolution of an expanding branch
 \[
 \langle \hat{V} \rangle_{\lambda_o} - \langle \hat{V} \rangle_\lambda = (I_-(\lambda_o) - I_-(\lambda)) e^{-\sqrt{12\pi G} \phi}
 \]
 which diverges as \(\phi \to -\infty \).

 \[
 \phi_B = (2\sqrt{12\pi G})^{-1} \ln(I_+/I_-) \to -\infty \quad \text{as} \quad \lambda \to 0.
 \]

- Uniform limit does not exist. Contrast with results on Harmonic Oscillator (Corichi, Vukasinac, Zapata (07)).