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1 Introduction

Over the last thirty years, black holes have been shown to have a number of surprising
properties. These discoveries have revealed unforeseen relations between the otherwise
distinct areas of general relativity, quantum physics and statistical mechanics. This
interplay, in turn, led to a number of deep puzzles at the very foundations of physics.
Some have been resolved while others continue to baffle physicists. The starting point
of these fascinating developments was the discovery of laws of black hole mechanics by
Bardeen, Bekenstein, Carter and Hawking. They dictate the behavior of black holes in
equilibrium, under small perturbations away from equilibrium, and in fully dynamical
situations. While they are consequences of classical general relativity alone, they
have a close similarity with the laws of thermodynamics. The origin of this seemingly
strange coincidence lies in quantum physics. For further discussion, see articles on
quantum field theory in curved space-times and quantum gravity.

The focus of this review is just on black hole mechanics. The discussion is divided
into three parts. In the first, we will introduce the notions of event horizons and black
hole regions and discuss properties of globally stationary black holes. In the second,
we will consider black holes which are themselves in equilibrium but in surroundings
which may be time-dependent. Finally, in the third part, we summarize what is
known in the fully dynamical situations. For simplicity, all manifolds and field are
assumed to be smooth and, unless otherwise stated, space-time is assumed to be 4-
dimensional, with a metric of signature -,+,+,+, and the cosmological constant is
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assumed to be zero. An arrow under a space-time index denotes the pull-back of that
index to the horizon.

2 Global equilibrium

To capture the intuitive notion that black hole is a region from which signals can not
escape to the asymptotic part of space-time, one needs a precise definition of future
infinity. The standard strategy is to use Penrose’s conformal boundary I+. A Black-
hole region B of a space-time (M, gab) is defined as B = M\I−(I+), where I− denotes
‘chronological past’. The boundary ∂B of the black hole region is called the event
horizon and denoted by E. Thus, E is the boundary of the past of I+. It therefore
follows that E is a null 3-surface, ruled by future inextendible null geodesics without
caustics. If the space-time is globally hyperbolic, an ‘instant of time’ is represented
by a Cauchy surface M . The intersection of B with M may have several disjoint
components, each representing a black hole at that instant of time. If M ′ is a Cauchy
surface to the future of M , the number of disjoint components of M ′∪B in the causal
future of M ∪B must be less than or equal to those of M ∪B (see Hawking & Ellis
1973). Thus, black holes can merge but can not bifurcate. (By a time reversal, i.e. by
replacing I+ with I− and I− with I+, one can define a white hole region W. However,
here we will focus only on black holes.)

A space-time (M, gab) is said to be stationary (i.e., time-independent) if gab admits
a Killing field ta which represents an asymptotic time-translation. By convention, ta

is assumed to be unit at infinity. (M, gab) is said to be axi-symmetric if gab admits
a Killing field φa generating an SO(2) isometry. By convention φa is normalized
such that the affine length of its integral curves is 2π. Stationary space-times with
non-trivial M \ I−(I+) represent black holes which are in global equilibrium. In the
Einstein-Maxwell theory in 4 dimensions, there exists a unique 3-parameter family of
stationary black hole solutions, generally parameterized by mass m, angular momen-
tum J and electric charge Q. This is the celebrated Kerr-Newman family. Therefore,
in general relativity a great deal of work on black holes has focused on these solutions
and perturbations thereof. The Kerr-Newman family is axi-symmetric and further-
more its metric has the property that the 2-flats spanned by the Killing fields ta and
φa are orthogonal to a family of 2-surfaces. This property is called ‘t− φ orthogonal-
ity’. Note however that uniqueness fails in higher dimensions, and also in presence of
non-Abelian gauge fields or rings of perfect fluids around black holes in 4 dimensions.
In mathematical physics, there is significant literature on the new stationary black
hole solutions in Einstein-Yang-Mills-Higgs theories. These are called ‘hairy black
holes’. Research on stationary black hole solutions with rings received a boost by
a recent discovery that these black holes can violate the Kerr inequality J ≤ Gm2

between angular momentum J and mass m.
A null 3-manifold K in M is said to be a Killing horizon if gab admits a Killing

field Ka which is everywhere normal to K. On a Killing horizon, one can show that
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the acceleration of Ka is proportional to Ka itself:

Ka∇aK
b = κKb . (2.1)

The proportionality function κ is called surface gravity. We will show in the next
section that if a mild energy condition holds on K then κ must be constant. Note
that if we rescale Ka via Ka → cKa, where c is a constant, surface gravity also
rescales as κ → cκ.

In the Kerr-Newman family, the event horizon is a Killing horizon. More generally,
if an axi-symmetric, stationary black hole space-time (M, gab) satisfies the ‘t − φ
orthogonality’ property, its event horizon E is a Killing horizon.1 In these cases, the
normalization freedom in Ka is fixed by requiring that Ka have the form

Ka = ta + Ωφa (2.2)

on the horizon, where Ω is a constant, called the angular velocity of the horizon. The
resulting κ is called the surface gravity of the black hole. It is remarkable that κ is
constant for all such black holes, even when their horizon is highly distorted (i.e. far
from being spherically symmetric) either due to rotation or due to external matter
fields. This is analogous to fact that the temperature of a thermodynamical system
in equilibrium is constant, independently of the details of the system. In analogy
with thermodynamics, constancy of κ is referred to as the zeroth law of black hole
mechanics.

Next, let us consider an infinitesimal perturbation δ within the 3-parameter Kerr-
Newman family. A simple calculation shows that the changes in the Arnowitt-Deser-
Misner (ADM) mass m, angular momentum J , and the total charge Q of the space-
time and in the area a of the horizon are constrained via

δm =
κ

8πG
δa + Ω δJ + ΦδQ (2.3)

where the coefficients κ, Ω, Φ are black hole parameters, Φ = AaK
a being the elec-

trostatic potential at the horizon. The last two terms, ΩδJ and ΦδQ, have the
interpretation of ‘work’ required to spin the black hole up by an amount δJ or to
increase its charge by δQ. Therefore (2.3) has a striking resemblance to the first law,
δE = TδS + δW , of thermodynamics if (as the zeroth law suggests) κ is made pro-
portional to the temperature T and the horizon area a, to the entropy S. Therefore,
(2.3) and its generalizations discussed below are referred to as the first law of black
hole mechanics.

In Kerr-Newman space-times, the only contribution to the stress-energy tensor
comes from the Maxwell field. Bardeen, Carter and Hawking (1973) consider station-
ary black holes with matter such as perfect fluids in the exterior region and stationary

1Although one can envisage stationary black holes in which these additional symmetry conditions
are not met, this possibility has been ignored in black hole mechanics on stationary space-times.
Quasi-local horizons, discussed below, do not require any space-time symmetries.
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perturbations δ thereof. Using Einstein’s equations, they show that the form (2.3)
of the first law does not change; the only modification is addition of certain matter
terms on the right side which can be interpreted as the work δW done on the total sys-
tem. A generalization in another direction was made by Iyer and Wald (1994) using
Noether currents. They allow non-stationary perturbations and, more importantly,
drop the restriction to general relativity. Instead, they consider a wide class of dif-
feomorphism invariant Lagrangian densities L(gab, Rabcd,∇aRbcde, . . . , Φ

..
..,∇aΦ

..
.. . . .)

which depend on the metric gab, matter fields Φ..
.. and a finite number of derivatives

of the Riemann tensor and matter fields. Finally, they restrict themselves to κ 6= 0.
In this case, on the maximal analytic extension of the space-time, the Killing field
Ka vanishes on a 2-sphere So called the bifurcate horizon. Then, (2.3) is generalized
to:

δM =
κ

2π
δShor + δW . (2.4)

Here δW again represents ‘work terms’ and Shor is given by:

Shor = −2π

∮

So

δL

δRabcd

nabncd , (2.5)

where nab is the bi-normal to So (with nabn
ab = −2), and the functional derivative

inside the integral is evaluated by formally viewing the Riemann tensor as a field
independent of the metric. For the Einstein-Hilbert action, this yields Shor = a/4G
and one recovers (2.3).

These results are striking. However, the underlying assumptions have certain
unsatisfactory aspects. First, although the laws are meant to refer just to black
holes, one assumes that the entire space-time is stationary. In thermodynamics, by
contrast, one only assumes that the system under consideration is in equilibrium, not
the whole universe. Second, in the first law, quantities a, Ω, Φ are evaluated at the
horizon while M, J are evaluated at infinity and include contributions from possible
matter fields outside the black hole. A more satisfactory law of black hole mechanics
would involve attributes of the black hole alone. Finally, the notion of the event
horizon is extremely global and teleological since it explicitly refers to I+. An event
horizon may well be developing in the very room you are sitting today in anticipation
of a gravitational collapse in the center of our galaxy which may occur a billion years
hence. This feature makes it impossible to generalize the first law to fully dynamical
situations and relate the change in the event horizon area to the flux of energy and
angular momentum falling across it. Indeed, one can construct explicit examples of
dynamical black holes in which an event horizon E forms and grows in the flat part
of a space-time where nothing happens physically. These considerations call for a
replacement of E by a quasi-local horizon which leads to a first law involving only
horizon attributes, and which can grow only in response to the influx of energy. These
horizons are discussed in the next two sections.
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3 Local equilibrium

The key idea here is drop the requirement that space-time should admit a stationary
Killing field and ask only that the intrinsic horizon geometry be time-independent.
Consider a null 3-surface ∆ in a space-time (M, gab) with a future pointing normal
field `a. The pull-back qab := gab←−

of the space-time metric to ∆ is the intrinsic,

degenerate ‘metric’ of ∆ with signature 0,+,+. The first condition is that it be ‘time-
independent’, i.e. L ` qab = 0 on ∆. Then by restriction, the space-time ∇ induces a
natural derivative operator D on ∆. While D is compatible with qab, i.e. Daqbc = 0,
it is not uniquely determined by this property because qab is degenerate. Thus, D
has extra information, not contained in qab. The pair (qab, D) is said to determine the
intrinsic geometry of the null surface ∆. This notion leads to a natural notion of a
horizon in local equilibrium. Let ∆ be a null, 3-dimensional sub-manifold of (M, gab)
with topology S× R, where S is compact and without boundary.
Definition 1: ∆ is said to be isolated horizon if it admits a null normal `a such that:
i) L ` qab = 0 and [L `, D] = 0 on ∆; and
ii) −T a

b`
b is a future pointing causal vector on ∆.

On can show that, generically, this null normal field `a is unique up to rescalings by
positive constants.

Both conditions are local to ∆. In particular, (M, gab) is not required to be
asymptotically flat and there is no longer any teleological feature. Since ∆ is null
and L `qab = 0, the area of any of its cross sections is the same, denoted by a∆. As
one would expect, one can show that there is no flux of gravitational radiation or
matter across ∆. This captures the idea that the black hole itself is in equilibrium.
Condition ii) is a rather weak ‘energy condition’ which is satisfied by all matter fields
normally considered in classical general relativity. The non-trivial condition is i). It
extracts from the notion of a Killing horizon just a ‘tiny part’ that refers only to
the intrinsic geometry of ∆. As a result, every Killing horizon K is, in particular,
an isolated horizon. However, a space-time with an isolated horizon ∆ can admit
gravitational radiation and dynamical matter fields away from ∆. In fact as a family
of Robinson-Trautman space-times illustrates, gravitational radiation could even be
present arbitrarily close to ∆. Because of these possibilities, there are many non-
trivial examples and the transition from event horizons of stationary space-times to
isolated horizons represents a significant generalization of black hole mechanics.2

An immediate consequence of the requirement L `qab = 0 is that there exists a
1-form ωa on ∆ such that Da`

b = ωa`
b. Following the definition of κ on a Killing

horizon, the surface gravity κ(`) of (∆, `) is defined as κ(`) = ωa`
a. Again, under

`a → c`a, we have κ(c`) = cκ`. Together with Einstein’s equations, the two conditions
of Definition 1 imply L ` ωa = 0 and `aD[aωb] = 0. The Cartan identity relating the

2In fact the derivation of the zeroth and the first law requires slightly weaker assumptions,
encoded in the notion of a ‘weakly isolated horizon’ (Ashtekar et al 2000, 2001).
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Lie and exterior derivative now yields

Da(ωb`
b) ≡ Daκ(`) = 0 . (3.6)

Thus, surface gravity is constant on every isolated horizon. This is the zeroth law,
extended to horizons representing local equilibrium. In presence of an electromagnetic
field, Definition 1 and the field equations imply: L ` Fab←−

= 0 and `aFab←−
= 0. The first

of these equations implies that one can always choose a gauge in which L `Aa←−
= 0.

By Cartan identity it then follows that the electrostatic potential Φ(`) := Aa`
a is

constant on the horizon. This is the Maxwell analog of the zeroth law.
In this setting, the first law is derived using a Hamiltonian framework (Ashtekar

et al 2000, 2001). For concreteness, let us assume that we are in the asymptotically
flat situation and the only gauge field present is electromagnetic. One begins by
restricting oneself to horizon geometries such that ∆ admits a rotational vector field
ϕa satisfying3 L ϕqab = 0. One then constructs a phase space Γ of gravitational and
matter fields such that i) M admits an internal boundary ∆ which is an isolated
horizon; and ii) all fields satisfy asymptotically flat boundary conditions at infinity.
Note that the horizon geometry is allowed to vary from one phase space point to
another; the pair (qab, D) induced on ∆ by the space-time metric only has to satisfy
Definition 1 and the condition L ϕqab = 0.

Let us begin with angular momentum. Fix a vector field φa on M which coin-
cides with the fixed ϕa on ∆ and is an asymptotic rotational symmetry at infinity.
(Note that φa is not restricted in any way in the bulk.) Lie derivatives of gravita-
tional and matter fields along φa define a vector field X(φ) on Γ. One shows that
it is an infinitesimal canonical transformation, i.e., satisfies LX(φ) Ω = 0 where Ω
is the symplectic structure on Γ. The Hamiltonian H(φ) generating this canonical
transformation is given by:

H(φ) = J
(φ)
∆ − J (φ)

∞ where J
(φ)
∆ = − 1

8πG

∮

S
(ωaφ

a) ε− 1

4π

∮

S
(Aaφ

a) ?F (3.7)

where J
(φ)
∞ is the ADM angular momentum at infinity, S is any cross-section of ∆

and ε the area element thereon. The term J
(φ)
∆ is independent of the choice of S

made in its evaluation and interpreted as the horizon angular momentum. It has
numerous properties that support this interpretation. In particular, it yields the
standard angular momentum expression in Kerr-Newman space-times.

To define horizon energy, one has to introduce a ‘time-translation’ vector field ta.
At infinity, ta must tend to a unit time translation. On ∆, it must be a symmetry of
qab. Since `a and ϕa are both horizon symmetries, ta = c`a + Ωϕa on ∆, for some
constants c and Ω. However, unlike φa, the restriction of ta to ∆ can not be fixed
once and for all but must be allowed to vary from one phase space point to another.

3In fact for black hole mechanics, it suffices to assume only that L ϕεab = 0 where εab is the
intrinsic area 2-form on ∆. The same is true on dynamical horizons discussed in the next section.
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In particular, on physical grounds, one expects Ω to be zero at a phase space point
representing a non-rotating black hole but non-zero at a point representing a rotating
black hole. This freedom in the boundary value of ta introduces a qualitatively new
element. The vector field X(t) on Γ defined by the Lie derivatives of gravitational
and matter fields does not, in general, satisfy LX(t) Ω = 0; it need not be an in-
finitesimal canonical transformation. The necessary and sufficient condition is that
(κ(c`)/8πG)δa∆ + ΩδJ∆ + Φ(c`)δQ∆ be an exact variation. That is, X(t) generates a

Hamiltonian flow if and only if there exists a function E
(t)
∆ on Γ such that

δE
(t)
∆ =

κ(c`)

8πG
δa∆ + ΩδJ∆ + Φ(c`)δQ∆ (3.8)

This is precisely the first law. Thus, the framework provides a deeper insight into the
origin of the first law: It is the necessary and sufficient condition for the evolution
generated by ta to be Hamiltonian. (3.8) is a genuine restriction on the choice of
phase space functions c and Ω, i.e., of restrictions to ∆ of evolution fields ta. It is
easy to verify that M admits many such vector fields. Given one, the Hamiltonian
H(t) generating the time evolution along ta takes the form

H(t) = E(t)
∞ − E

(t)
∆ , (3.9)

re-enforcing the interpretation of E
(t)
∆ as the horizon energy.

In general, there is a multitude of first laws, one for each vector field ta, the
evolution along which preserves the symplectic structure. In the Einstein-Maxwell
theory, given any phase space point, one can choose a canonical boundary value tao
exploiting the uniqueness theorem. E

(to)
∆ is then called the horizon mass and denoted

simply by m∆. In the Kerr-Newman family, H(to) vanishes and m∆ coincides with
the ADM mass m∞. Similarly, if φa is chosen to be a global rotational Killing field,
J

(φ)
∆ equals J

(φ)
∞ . However, in more general space-times where there is matter field or

gravitational radiation outside ∆, these equalities do not hold; m∆ and J∆ represent
quantities associated with the horizon alone while the ADM quantities represent the
total mass and angular momentum in the space-time, including contributions from
matter fields and gravitational radiation in the exterior region. In the first law (3.8),
only the contributions associated with the horizon appear.

When the uniqueness theorem fails, as for example in the Einstein-Yang-Mills-
Higgs theory, first laws continue to hold but the horizon mass m∆ becomes ambiguous.
Interestingly, these ambiguities can be exploited to relate properties of hairy black
holes with those of the corresponding solitons.

4 Dynamical situations

A natural question now is whether there is an analog of the second law of thermody-
namics. Using event horizons, Hawking showed that the answer is in the affirmative
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(see Hawking & Ellis 1973). Let (M, gab) admit an event horizon E. Denote by `a

a geodesic null normal to E. Its expansion is defined as θ(`) := qab∇a`b, where qab

is any inverse of the degenerate intrinsic metric qab on E, and determines the rate of
change of the area-element of E along `a. Assuming that the null energy condition
and Einstein’s equations hold, the Raychaudhuri equation immediately implies that if
θ(`) were to become negative somewhere it would become infinite within a finite affine
parameter. Hawking showed that, if there is a globally hyperbolic region containing
I−(I+) ∪ E —i.e., if there are no naked singularities— this can not happen, whence
θ(`) ≥ 0 on E. Hence, if a cross-section S2 of E is to the future of a cross section S1,
we must have aS2 ≥ aS1 . Thus, in any (i.e., not necessarily infinitesimal) dynamical
process, the change ∆a in the horizon area is always non-negative. This result is
known as the second law of black hole mechanics. As in the first law, the analog of
entropy is the horizon area.

It is tempting to ask if there is a local physical process directly responsible for the
growth of area. For event horizons, the answer is in the negative since they can grow
in a flat porion of space-time. However, one can introduce quasi-local horizons also in
the dynamical situations and obtain the desired result (Ashtekar & Krishnan 2003).
These constructions are strongly motivated by earlier ideas introduced by Hayward
(1994).
Definition 2: A 3-dimensional space-like sub-manifold H of (M, gab) is said to be a
dynamical horizon if it admits a foliation by compact 2-manifolds S (without bound-
ary) such that:
i) The expansion θ(`) of one (future directed) null normal field `a to S vanishes and
the expansion of the other (future directed) null normal field, na is negative; and
ii) −T a

b`
b is a future pointing causal vector on H.

One can show that this foliation of H is unique and that S is either a 2-sphere or,
under degenerate and physically over restrictive conditions, a 2-torus. Each leaf S is
a marginally trapped surface and referred to as a cut of H. Unlike event horizons E,
dynamical horizons H are locally defined and do not display any teleological feature.
In particular, they can not lie in a flat portion of space-time. Dynamical horizons
commonly arise in numerical simulations of evolving black holes as world tubes of
apparent horizons. As the black hole settles down, H asymptotes to an isolated
horizon ∆ , which tightly hugs the asymptotic future portion of the event horizon.
However, during the dynamical phase, H typically lies well inside E.

The two conditions in Definition 2 immediately imply that the area of cuts of H

increases monotonically along the ‘outward direction’ defined by the projection of `a

on H. Furthermore, this change turns out to be directly related to the flux of energy
falling across H. Let R denote the ‘radius function’ on H so that the area of any cut
S is given by aS = 4πR2. Let N denote the norm of ∂aR and ∆H, the portion of
H bounded by two cross-sections S1 and S2. The appropriate energy turns out to be
associated with the vector field N`a where `a is normalized such that its projection on
H is the unit normal r̂a to the cuts S. In the generic and physically interesting case
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when S is a 2-sphere, the Gauss and the Codazzi (i.e. constraint) equations imply:

1

2G
(R2 −R1) =

∫

∆H

Tab N`aτ̂ bd3V +
1

16πG

∫

∆H

N
(
σabσ

ab + 2ζaζ
a
)

d3V. (4.10)

Here τ̂a is the unit normal to H, σab, is the shear of `a (i.e., the trace-free part
of qamqbm∇m`n) and ζa = qabr̂c∇c`b, where qab is the projector onto the tangent
space of the cuts S. The first integral on the right can be directly interpreted as the
flux across ∆H of matter-energy (relative to the vector field N`a). The second term
is purely geometric and is interpreted as the flux of energy carried by gravitational
waves across ∆H. It has several properties which support this interpretation. Thus,
not only does the second law of black hole mechanics hold for a dynamical horizon H,
but the ‘cause’ of the increase in the area can be directly traced to physical processes
happening near H.

Another natural question is whether the first law (3.8) can be generalized to fully
dynamical situations, where δ is replaced by a finite transition. Again, the answer is
in the affirmative. We will outline the idea for the case when there are no gauge fields
on H. As with isolated horizons, to have a well-defined notion of angular momentum,
let us suppose that the intrinsic 3-metric on H admits a rotational Killing field ϕ.
Then, the angular momentum associated with any cut S is given by

J
(ϕ)
S = − 1

8πG

∮

S
Kabϕ

ar̂ b d2V ≡ 1

8πG

∮

S
j(ϕ)d2V , (4.11)

where Kab is the extrinsic curvature of H in (M, gab) and j(ϕ) is interpreted as ‘the
angular momentum density’. Now, in the Kerr family, the mass, surface-gravity
and the angular velocity can be unambiguously expressed as well-defined functions
m̄(a, J), κ̄(a, J) and Ω̄(a, J) of the horizon area a and angular momentum J . The idea
is to use these expressions to associate mass, surface gravity and angular velocity with
each cut of H. Then, a surprising result is that the difference between the horizon
masses associated with cuts S1 and S2 can be expressed as the integral of a locally
defined flux across the portion ∆H of H bounded by H1 and H2:

m̄2 − m̄1 =
1

8πG

∫

∆H

κ̄da

+
1

8πG

{∮

S2
Ω̄jϕ d2V −

∮

S1
Ω̄jϕ d2V −

∫ Ω̄2

Ω̄1

dΩ̄

∮

S
jϕ d2V

}
(4.12)

If the cuts S2 and S1 are only infinitesimally separated, this expression reduces pre-
cisely to the standard first law involving infinitesimal variations. Therefore, (4.12) is
an integral generalization of the first law.

Let us conclude with a general perspective. On the whole, in the passage from
event horizons in stationary space-times to isolated horizons and then to dynamical
horizons, one considers increasingly more realistic situations. In all three cases, the
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analysis has been extended to allow the presence of a cosmological constant Λ. (The
only significant change is that the topology of cuts S of dynamical horizons is restricted
to be S2 if Λ > 0 and is completely unrestricted if Λ < 0.) In the first two frameworks,
results have also been extended to higher dimensions. Since the notions of isolated
and dynamical horizons make no reference to infinity, these frameworks can be used
also in spatially compact space-times. The notion of an event horizon, by contrast,
does not naturally extend to these space-times. On the other hand, the generalization
(2.4) of the first law (2.3) is applicable to event horizons of stationary space-times in a
wide class of theories while so far the isolated and dynamical horizon frameworks are
tied to general relativity (coupled to matter satisfying rather weak energy conditions).
From a mathematical physics perspective, extension to more general theories is an
important open problem.
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